A new Approach to Potash Production
This presentation contains certain forward-looking statements relating, but not limited, to Gensource Potash Corporation expectations, intentions, plans and beliefs. Forward-looking information can often be identified by forward looking words such as “anticipate”, “believe”, “expect”, “goal”, “plan”, “intend”, “estimate”, “may” and “will” or similar words suggesting future outcomes or other expectations, beliefs, plans, objectives, assumptions, intentions or statements about future events or performance. Forward-looking information may include reserve and resource estimates, estimates of future production, costs of capital projects and timing of commencement of operations, and is based on current expectations that involve a number of business risks and uncertainties. Factors that could cause actual results to differ materially from any forward-looking statement include, but are not limited to, failure to establish estimated resources and reserves, the recovery of resources varying from estimates, capital and operating costs varying significantly from estimates, delays in obtaining or failures to obtain required governmental, environmental or other project approvals, inflation, changes in exchange rates, fluctuations in commodity prices, delays in the development of projects and other factors. Forward-looking statements are subject to risks, uncertainties and other factors that could cause actual results to differ materially from expected results.

Shareholders and prospective investors should be aware that these statements are subject to known and unknown risks, uncertainties and other factors that could cause actual results to differ materially from those suggested by the forward-looking statements. Shareholders are cautioned not to place undue reliance on forward-looking information. By its nature, forward-looking information involves numerous assumptions, inherent risks and uncertainties, both general and specific, that contribute to the possibility that the predictions, forecasts, projections and various future events will not occur. Gensource undertakes no obligation to update publicly or otherwise revise any forward-looking information whether as a result of new information, future events or other such factors which affect this information, except as required by law.

This caution is provided in accordance with the requirements of Parts 4A and 4B of National Instrument 51-102 Continuous Disclosure Obligations, respecting disclosure of forward looking information.
CONTENTS:

• Who is Gensource
• State of the potash industry/market
• Gensource Potash:
  – Strategy / Business Model
  – Plans / Projects
• How does that fit?
• What to expect / Investment Opportunity

Appendix – Background information on:

• Nutrients
• About Potash
• Potash in Saskatchewan
Who is Gensource?
• Publicly traded junior development company (GSP: TSX-V)
• Potash-focused - 100%
• Management team who has done this before
• Building a potash and Saskatchewan focused Board of Directors
• Advisory Board – World Class Expertise
• Project locations where the “right” potash is, not where the KP’s happen to be available
Goal:

- To use the expertise of the Management Team and Advisory Board to implement a 21st century approach to potash development in Saskatchewan – using techniques that use less energy, less water and that require smaller initial capital expenditure.

- To become the next independent potash producer. From a strict tonnage perspective, it is arguable whether the world needs additional production today, but it certainly needs new and independent producers.
Mike Ferguson, P.Eng., President & CEO. Mike led the Potash One team that developed the Legacy project—the only Saskatchewan greenfield potash development to proceed.

Steve Halabura, P.Geo., FEC (Hon), Director, Geology. Steve is the pre-eminent geologist in the Prairie Evaporite. Steve sited Legacy (Potash One/ K+S), Jansen Lake (BHP-B), Burr (Athabasca Potash) and more.

Rob Theoret, B.Comm., CIM, CFO. Co-founder of Nexxt Potash. Successfully financed several local junior development companies.
**Max Ramey, PE, Solution Mining.**
Max was the technical drive behind the Legacy Project. With his extensive experience and track record in operations and design of solution mining facilities, Max is a world-class expert in high demand.

**John McEwan, PE, Processing.**
John created the process design for the Legacy project based on his almost 40 years in the mining industry. With solution processing expertise in many minerals under varied chemical conditions, John leads the effort to improve processing techniques.

**Sandy Debuscherre, Drilling.** Sandy is the most well-known and sought-after drilling design and execution consultant in the province, with extensive experience in oil & gas and potash exploration and operational drilling. Sandy’s expertise extends to horizontal drilling and solution mining-specific aspects of drilling and casing operations.

**Jim Elliot, Strategic Business Advisor.** Jim founded Tron Power in northern Saskatchewan and led the development of that company into arguably the most successful First Nations owned construction contracting company.
State of the Potash Industry / Market
Confusion Reigns Supreme

“Uralkali CEO Arrested in Belarus” BBC News

“The End of the Potash World as we know it” Joel Jackson BMO Analyst

“Potash Prices Set to Plunge After Cartel Breakup” Financial Post

“The Day Everything Changed in the World of Potash” Businessweek

“The Fertilizer Hits the Fan....” The Globe and Mail
Correlation – Grain The Main Driver

- Historically, grain demand has had the strongest relationship with potash demand
- Grain / Potash Demand Correlation = 79%
- 2013E Potash Demand = 55 Mt/yr

Potash Demand Vs. Grain Demand

Potash Demand (Kt) = 11,522 + 0.017*[Grain Demand (Kt)]

R² = 62%
Potash demand posted a Compound Annual Growth Rate (CAGR) of 3.6% from 1950 to 2008.

**Implication:** Potash Demand Grows ≈ 2 Mt/year
Global Potash Industry

Current Market Situation

- Global supply is dominated by a few major players
- Potash consumption is growing at 3% annually (source PCS)
  - But, this is not supported by the data in recent years.
- The current global market is approx. 55 million tonnes
- Global potash demand could increase significantly as substantial tracts of farm land currently receive much less than optimum fertilizer application
- 2013 was a difficult year for potash
  - Russian-Belorussian company BPC breakup
  - Uralkali increasing production
  - Prices dropping quickly
  - General uncertainty
- Prices seemed to bottom in early 2014 at $305/t
Historical Potash Prices

2-3x Price Increase

Source: ICIS, Integer

$305
Current world potash production and demand (2012)

Potash Production by Country
- Canada: 32%
- Russia: 8%
- Belarus: 19%
- Germany: 15%
- Israel: 14%
- China: 9%
- Jordan: 8%
- Rest of World: 15%

Potash Demand by Country
- China: 23%
- USA: 20%
- Brazil: 16%
- India: 14%
- Oceana: 14%
- Europe: 10%
- Other: 9%

Source: Integer, Gensource Potash Corp
Gensource Potash

(TSX.V: GSP)

Business Model
Business Model - Potash 2.0

Successful Potash Development Project

- Market Access
  Distribution of potash

- Financial Capacity
  Financing of mine

- Execution Expertise
  Project developers including the land position
Business model as a 3-legged stool:

• **Leg 1 – Market Access.**
  The market for potash is not an open one. There is no organized exchange for the commodity and private sales between the few large suppliers/sales organizations and consumer/distributors set benchmark prices each year. The ultimate distribution of potash seems just as concentrated as the production with often only a handful of organizations controlling the distribution of the product in many large market areas.

• **Leg 2 – Execution Expertise.**
  No new mine in Saskatchewan has been brought to production since 1972, so engaging the right team to develop the project becomes critical to success. Gensource represents the assemblage of the one team that has developed a new mine to the point of construction in the province – the Legacy Mine, now owned and being constructed by K+S Potash Canada.

• **Leg 3 – Financing.**
  With the typical cost of a new 2-3 Mt/a capacity mine and process plant being in the $3 B range, having a clear financing plan at the early stages of development is critical. With Legs 1 and 2 in place, as well as Gensource’s novel approach to potash development, financing becomes a much more attractive proposition.
Potash 1.0 Start of Land Rush Era

Originally ~ 800,000 acres
- Crown potash reserve wide open
- Extensive land staking rush begins
- New players with limited technical knowledge

Potash 2.0 Begins

Currently ~ 11 million acres
- Focus on solution mining
- Vertical integration
- New technology emerging
- New KP regulatory environment
- Potash 1.0 permits will being to revert to Crown
Potash 2.0 Features:

- Updated mining and processing technologies for the 21st century
  - See next slide
- Departure from the typical junior development approach:
  - Market partners engaged in the project at the outset
  - Focus on reaching production, rather than a develop and flip plan
  - Rational project specifications and plans to fit the identified market (not every new mine needs to be the same 2 – 3 Mt/a capacity design)
Potash 2.0 developments must deal with the issues identified during the past 50 years of operation and the recent “rush”

<table>
<thead>
<tr>
<th>Issue</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant salt tailings stored on surface for indefinite periods of time</td>
<td>Resolution of the problem for existing operations is difficult. Using mining methods that leave all or most of the salt underground provides advantages to new mines</td>
</tr>
<tr>
<td>Large fresh water consumption</td>
<td>Existing solution mining methods consume very large volumes of fresh water. Methods to increase circulation and prevent creation of excess brine will significantly reduce fresh water use.</td>
</tr>
<tr>
<td>Energy consumption, particularly for evaporation-crystallization solution mining operations is very large</td>
<td>Thermal processes consume large amounts of energy – new approaches driving for energy reduction result in not only lower carbon footprint but reduced operating costs as well.</td>
</tr>
</tbody>
</table>
Typical Saskatchewan Solution Mining Math

The right resource and land package required to provide a long mine life

Example:

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1610 meters</td>
<td>1610 meters</td>
</tr>
<tr>
<td>X Width</td>
<td>1610 meters</td>
<td>1610 meters</td>
</tr>
<tr>
<td>X Thickness</td>
<td>30-35 meters</td>
<td>30 meters</td>
</tr>
<tr>
<td>X Grade</td>
<td>22-28%</td>
<td>25%</td>
</tr>
<tr>
<td>X Specific Gravity</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>X Process Losses</td>
<td>5-10%</td>
<td>10%</td>
</tr>
<tr>
<td>X Anomaly Losses</td>
<td>15-30%</td>
<td>25%</td>
</tr>
<tr>
<td>X Extraction Ratio</td>
<td>30-40%</td>
<td>35%</td>
</tr>
<tr>
<td>= Total Potash / section</td>
<td>9.8 million tonnes</td>
<td></td>
</tr>
</tbody>
</table>

Only a 20,000 acre mine provides: >305 million t

Mine Life 100 - 150 years
This project is made up of Freehold mineral leases (21 years), with a novel approach to engaging the surrounding minerals.

- Comprises an area up to 123,000 acres (several mining blocks of 20,000 ac each are possible)
- Freehold mineral leasing is on-going
- 3 on-property historic drill holes
- Historical NI43-101 indicates excellent grades, thickness and temperatures
- Solution mining target
This project is made up of Freehold mineral leases (21 years), with a novel approach to engaging the surrounding Minerals.

- Comprises up to 42,000 acres (1 or 2 mining blocks)
- 2 on-property historic drill holes
- Historical NI43-101 indicates strong grades and good thickness
- Freehold mineral leasing is on going
- Solution mining preferred, but is also conventional target
Investment Opportunity
1. Global potash consumers are looking for a long term stable supply of potash

2. Saskatchewan has an estimated 3000 + years supply of potash

3. Through partnerships created in 2013, Gensource is signatory to 5 Letters of Intent with fertilizer distributors in China. \textbf{Leg 1 ☑}

4. We have assembled a world class project development team with direct potash mine building experience. \textbf{Leg 2 ☑}

5. \textbf{Gensource continues to built additional partnerships to augment access to global markets.}
Corporate Milestones

1) Milestones / Catalysts
   - 1.1) Advisory Board – the team
   - 1.2) Positive private placement results
   - 1.3) Project strategic partner and Land
   - 1.4) Logistics partner
   - 1.5) PEA results
   - 1.6) Market partners
   - 1.7) Resource
   - 1.8) PFS results
   - 1.9) FS results
   - 1.10) Regulatory Approval
   - 1.11) Capex financing success
   - 1.12) Construction Decision
Proposed Field Program – 2013/2014

1) Milestones / Catalysts
   - 1.1) Advisory Board – the team
   - 1.2) Positive private placement results
   - 1.3) Project strategic partner and Land
   - 1.4) Logistics partner
   - 1.5) PEA results
   - 1.6) Market partners
   - 1.7) Resource
   - 1.8) PFS results
   - 1.9) FS results
   - 1.10) Regulatory Approval
   - 1.11) Capex financing success
   - 1.12) Construction Decision

2) Leg 1 – Market Access
   - 2.1) Market Partners
   - 2.2) Logistics

3) Leg 2 – Execution Expertise
   - 3.1) Land Control
   - 3.2) Project Definition

4) Leg 3 – Financing
   - 4.1) Market development capital – $1.5 M
   - 4.2) Drilling and project development – $15-$20M
   - 4.3) Capex financing – $50 – $100M
Example of Value Creation With The Gensource Potash Team

* KP289 was identified and applied by Steve Halabura.
* KP289 constituted Potash One’s Legacy project, which was led by Mike Ferguson to construction decision.
* Nov 22nd, 2010, Legacy project/Potash One was acquired by K+S with 437 million dollars.
Gensource Potash Corporation

**Stock Symbol** | GSP – TSX.V
---|---
Share Price | $0.03 (as of 02-02-14)
52 Week High/Low | $0.1150 - $0.03

Shares outstanding – 100 million
- Fully Diluted 119 million

<table>
<thead>
<tr>
<th>Warrants</th>
<th>Exercise</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,500,000</td>
<td>$0.25</td>
<td>3-29-2014</td>
</tr>
</tbody>
</table>

• Directors/Management and closely held – 20%
• Market capitalization - $5 million
Mike Ferguson, P.Eng.  
President & CEO  
Gensource Potash Corp.  
Suite 1100, 201 1st Ave. South  
Saskatoon, Saskatchewan  
Mike@gensource.ca  
306-974-6414

Rob Theoret, B.Comm., CIM  
CFO  
Gensource Potash Corp.  
Suite 1100, 201 1st Ave. South  
Saskatoon, Saskatchewan  
Rob@gensource.ca  
306-974-6406
Nutrients 101
Liebig’s Law (Law of Minimum)

Principle developed Carl Sprengel (1828) and later popularized by Justus von Liebig - states that growth is controlled not by the total amount of resources available, but by the scarcest resource (limiting factor).

By increasing the amount of the limiting nutrient (the one most scarce in relation to "need") is the growth of a plant or crop improved.

"The availability of the most abundant nutrient in the soil is only as good as the availability of the least abundant nutrient in the soil"

Plants require 16 different nutrients for healthy growth - classified as 
Macronutrients (Primary & Secondary) or Micronutrients

The three primary macronutrients are nitrogen (N), phosphorous (P), 
and potassium (K) - consumed in the greatest quantities, these 
nutrients are each responsible for different aspects of plant health.

**Nitrogen (N)**
Promotes protein formation
Determines plant growth, yield, vigor and colour

**Phosphorus (P)**
Key in root development & photosynthesis process
_helps in drought resistance

**Potassium (K)**
Improves plant durability & resistance to drought, disease, 
weeds, parasites & cold weather.

Source: Fertilizer101.org
How Fertilizer is Delivered

- Nutrients are typically delivered via the direct blending of the primary nutrients or through application of a ‘compound’ fertilizer.
- Compound fertilizers contain a specific proportion of the primary nutrients within each granule, providing a precise composition appropriate to local farmer’s needs.
- Because these needs differ by region and crop, compound fertilizers are usually produced regionally.
<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Where It Comes From</th>
<th>What It Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N)</td>
<td>The atmosphere</td>
<td>Essential in protein formation</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>Shallow rock deposits formed by decay of ancient sea life</td>
<td>Essential for photosynthesis and other cellular processes</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Deep rock deposits left behind by evaporation of ancient seas</td>
<td>Helps produce higher quality crops</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Found around the world in rocks such as limestone and dolomite</td>
<td>Strengthens plant structure</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>China has replaced the United States as the largest supplier</td>
<td>Essential for chlorophyll formation</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>Commercial deposits found in volcanic regions such as Japan, Indonesia, and Sicily</td>
<td>Essential for production of amino acids</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>Primary sources of borax ore are Turkey and the United States</td>
<td>Important for healthy cell growth and pollen formation</td>
</tr>
<tr>
<td>Chlorine (Cl)</td>
<td>Salt deposits (sodium chloride) found around the world</td>
<td>Helps plants manage water stress</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>Largest producers are Chile, the United States, Indonesia, and Peru</td>
<td>Important catalyst for chemical reactions within plant cells</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>Largest producers include China, Brazil, Australia, India, and Russia</td>
<td>Important catalyst for chemical reactions within plant cells</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>Most important sources are South Africa and Ukraine</td>
<td>Helps plants make chlorophyll and regulates several key enzymes</td>
</tr>
<tr>
<td>Molybdenum (Mb)</td>
<td>Key producers include the United States, Canada, Chile, Russia, and China</td>
<td>Helps plants use N and P more efficiently</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>Key producers include Canada and Siberia (Russia)</td>
<td>Helps plants regulate biochemical processes</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>Large deposits in Australia, Canada, and the United States</td>
<td>Helps plants form proteins, starches, and growth hormones</td>
</tr>
</tbody>
</table>

Source: fertilizer101.org
About Potash
• Potash is an essential, irreplaceable nutrient needed for plant development

• Potash enhances water retention, increases crop yields, and aids plant resistance against disease

• Potassium’s main benefits include:

  - Enzyme Activation
  - Water Relations
  - Energy Production & Use
  - Nitrogen & Protein Synthesis
  - Starch Synthesis

• While potash has 3 main uses, 95% of the world’s potash is used in fertilizer

Source: Gensource Potash Corp.
Experimental studies have consistently shown the economic benefits of a balanced potash application program.

**Potash Application Yields Positive Net Returns**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Corn</td>
<td>127</td>
<td>170</td>
<td>51</td>
<td>$3.13</td>
<td>$134.59</td>
<td>$21.42</td>
<td>$113.17</td>
<td>6x</td>
</tr>
<tr>
<td>China Soybean</td>
<td>29</td>
<td>33</td>
<td>14</td>
<td>$14.74</td>
<td>$58.96</td>
<td>$5.32</td>
<td>$53.64</td>
<td>10x</td>
</tr>
<tr>
<td>China Corn</td>
<td>136</td>
<td>160</td>
<td>27</td>
<td>$5.98</td>
<td>$143.52</td>
<td>$10.26</td>
<td>$133.26</td>
<td>14x</td>
</tr>
<tr>
<td>India Rice</td>
<td>104</td>
<td>113</td>
<td>14</td>
<td>$6.38</td>
<td>$57.42</td>
<td>$5.32</td>
<td>$52.10</td>
<td>10x</td>
</tr>
<tr>
<td>India Wheat</td>
<td>61</td>
<td>70</td>
<td>14</td>
<td>$6.54</td>
<td>$58.86</td>
<td>$5.32</td>
<td>$53.54</td>
<td>11x</td>
</tr>
</tbody>
</table>

Assuming potash price of US$500/t in the U.S. and US$460/t in China and India.
Implications of Application

The actual impact of lower potash application may not be immediately apparent - could take 1-3 year to see the full impact

Effect of Continued Elimination of K Use on Soybean Yield in Brazil

- Past fertilizer delayed yield decline
- Severe yield loss regardless of history after years on this sandy soil.

Conclusion: While there may be some short-term pressure on potash demand, it will revert back to 3.6% CAGR.

Source: CIBC Institutional Equity Research Update “Global Potash Supply II”
WORLDWIDE FLOW OF NUTRIENTS
Nutrient Drivers
Macro and Micro
Dimensions of Food Security:

Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life.  

*World Food Summit, 1996*

**Food availability** - The availability of sufficient quantities of food

**Food access** - Access by individuals to adequate resources for acquiring appropriate foods

**Utilization** - Utilization of food through adequate diet

**Stability** - To be food secure, a population, household or individual must have access to adequate food at all times

*Source: FAO Policy Brief, Food Security, June 2006*
Macro Drivers – World Demographics

World population and income growth drive demand:

- World population increasing
- Decreasing arable land per capita
- Increasing standards of living as incomes rise

Source: FAOSTAT, World Bank, Gensource Potash Corp
Potash Development In Saskatchewan
Potash mining was not a planned industry

- German mines had created a virtual monopoly market for potash in Europe and in the United States, mining companies in New Mexico created a cartel that managed potash production and prices.

- Potash discovered by accident when US oil companies were exploring for oil as far back as 1945

- American companies were the first to invest in Saskatchewan potash – Potash Company of America (1954),

- between 1967 and 1970 seven more new mines were built
First Class Location for Potash Mining

- Low(est) cost of mining
  - World class scale
  - Consistent and predictable geology
  - High and consistent resource grades
- Established infrastructure
  - Rail – both CN + CP
  - Power
  - Natural gas
  - Highway road system
- Excellent access to US market
- Predictable freight rates to tidewater
- Geopolitically stable
  - Pro-actively supportive provincial government for new development

“For a group wanting potash product (rather than a potash “play”), Saskatchewan is the only logical choice.”

Mike Ferguson, CEO
Gensource Potash Corporation
The Potash Capital of the World

1. Vanscoy – Agrium
2. Cory – PotashCorp.
3. Patience Lake – PotashCorp.
4. Allan – PotashCorp.
5. Colonsay – Mosaic
6. Lanigan – PotashCorp.
7. Esterhazy K1/K2 – Mosaic
8. Rocanville – PotashCorp.
9. Belle Plaine - Mosaic
10. Rocanville – PotashCorp.
11. Jansen Lake- BHP
12. Legacy – K+S

Pink area indicates extent of Prairie Evaporite

Home to 11 potash producing mines & +50% of the world’s potash reserves

Source: Encyclopedia of Saskatchewan, company reports, USGSA, Gensource Potash Corp.
Potash Mining
Three principal potash mining methods:

1) Shaft mining or conventional underground mining;

2) Solution mining;

3) Evaporation of brines
Shaft mining or conventional underground mining:

Deeply buried marine evaporite deposits (typically found in Canada and Russia), range from 400 metres to greater than 1,000 metres below surface. Most potash is extracted from buried deposits using conventional mechanised underground mining methods, typically utilising the room-and-pillar method.

Other methods in widespread use include variations of room-and-pillar, longwall, cut and fill, and open stope techniques.

Source: Gensource Potash Corp
At great depths, conventional mining for potash faces technical challenges and costs which can be prohibitive due to significant costs associated with sinking deep shafts.

Labour costs and fuel and energy typically account for over half of the production costs for a conventional underground mine.
Solution mining

Solution mining is employed for deep evaporite deposits. The process involves pumping heated water through the ore body, dissolving the potash and pumping the resultant brine solution to a refinery for extraction.
Solution mining

The deposit temperature (and hence depth) is an important component in the economics of solution mining. Operating costs for conventional underground mining are generally lower compared to solution mining projects which tend to be more energy intensive. Fuel and energy costs alone may account for half of the operating costs in a solution mine.
The deposit temperature (and hence depth) is an important component in the economics of solution mining. Operating costs for conventional underground mining are generally lower compared to solution mining projects which tend to be more energy intensive. Fuel and energy costs alone may account for half of the operating costs in a solution mine.

Source: Gensource Potash Corp.
Evaporation of Brines

Evaporation of brines

There are also salt lakes, near-surface saturated gravels and underground aquifers containing minerals dissolved in brines and some may include buried layers of evaporite minerals. The brines are pumped to the surface into evaporation ponds where the water evaporates leaving potash, lithium, boron and salts behind.

Source: ICL Dead Sea Works, Gensource Potash Corp
Solution Mining is preferred over conventional mining for the following reasons:

- Reduced mining risk
- Shorter time to construction
- Lower capital cost
- Access to deeper resources
- More flexibility (scalability)
- Valuation is more attractive

“We continue to prefer solution mining over conventional mining for a new greenfield potash production due to the former’s better economics (NAV) and scalability (easier to finance).”

- Jacob Bout, CIBC World Markets
# Conventional Vs Solution Mining

<table>
<thead>
<tr>
<th></th>
<th>Conventional Mining</th>
<th>Solution Mining</th>
<th>Brine/Solar Evaporation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pros</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low operating costs</td>
<td></td>
<td>Low capital costs</td>
<td>Lowest operating expenses, utilizing natural (solar) energy</td>
</tr>
<tr>
<td>Well known and understood procedure</td>
<td></td>
<td>Reduced time to production</td>
<td>Possibility of other marketable by-products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low demand for labour</td>
<td>Low demand for labour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ability to mine deep or irregularly shaped deposits</td>
<td>Fast construction time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ability to &quot;deep inject&quot; waste salt back into mine</td>
<td></td>
</tr>
<tr>
<td><strong>Cons</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater capital costs</td>
<td></td>
<td>High energy usage resulting in greater operating costs</td>
<td>Dependent on climate and weather for evaporation</td>
</tr>
<tr>
<td>Underground infrastructure not easily moved to other locations</td>
<td></td>
<td>Procedure unproven for ore types other than sylvinite</td>
<td>Time-lag required for brine to evaporate</td>
</tr>
<tr>
<td>Mine flooding Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant underground mining equipment required (continuous miners, conveyance, etc.)</td>
<td></td>
<td>Generally smaller deposits or lower potassium content</td>
<td></td>
</tr>
<tr>
<td><strong>Capital Expense ($/t)</strong></td>
<td>$1750-$2200</td>
<td>$1000-$1700</td>
<td>$500-$1000</td>
</tr>
<tr>
<td><strong>Operating Expenses ($/t)</strong></td>
<td>$100</td>
<td>$60-150 (depending on ore and energy costs)</td>
<td>$40-$60 (potash typically by-product, skewing costs lower)</td>
</tr>
<tr>
<td><strong>Construction Time</strong></td>
<td>5-7 years</td>
<td>4-5 years</td>
<td>3-4 years</td>
</tr>
</tbody>
</table>
Considerations

- Mining Risk – potential flooding at conventional underground mines
- Infrastructure Risk
- Financing Risk
- Local Community
- Water
- Energy
- Environment
- Supply Side Shock

- Off-take Agreements
- Tax Environment
- Country/Political Risk
- Processing Risk

Source: Uralkali in Berezniki, Russia.
**Typical Saskatchewan Solution Potash Mine Economics**

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Capex Per tonne ($Cdn)</strong></td>
<td></td>
</tr>
<tr>
<td>Primary and Secondary Mining</td>
<td>1,050/t</td>
</tr>
<tr>
<td><strong>Operating Costs Mine Gate ($Cdn)</strong></td>
<td></td>
</tr>
<tr>
<td>Process Plant*</td>
<td>56/t</td>
</tr>
<tr>
<td>Mine Operating*</td>
<td>11/t</td>
</tr>
<tr>
<td>*</td>
<td>67/t</td>
</tr>
<tr>
<td><strong>Corporate SG&amp;A ($CDN)</strong></td>
<td>13/t</td>
</tr>
<tr>
<td><strong>Transportation Costs (FOB Vancouver, $CDN)</strong></td>
<td>45/t</td>
</tr>
</tbody>
</table>

* Operating costs assume water costs of $0.55/1m³, natural gas $5/GJ, power $.05/kW & $5.85/Kva demand.
* Costs are based on the typical solution mining approach. Gensource Potash Corporation is driving towards dramatic improvements.

Source: Gensource Potash Corp.
## Project Economics at Various Potash Pricing

<table>
<thead>
<tr>
<th>Price/Tonne</th>
<th>IRR</th>
<th>NPV @</th>
<th>Opp Margin</th>
<th>Payback (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.00%</td>
<td>8.00%</td>
<td>10.00%</td>
</tr>
<tr>
<td>$225</td>
<td>7.90%</td>
<td>$727,307,423</td>
<td>($28,957,488)</td>
<td>($465,149,086)</td>
</tr>
<tr>
<td>$250</td>
<td>9.93%</td>
<td>$1,610,260,569</td>
<td>$585,014,463</td>
<td>($17,220,637)</td>
</tr>
<tr>
<td>$275</td>
<td>11.77%</td>
<td>$2,493,213,715</td>
<td>$1,198,986,414</td>
<td>$430,707,813</td>
</tr>
<tr>
<td>$300</td>
<td>13.48%</td>
<td>$3,376,166,861</td>
<td>$1,812,958,364</td>
<td>$878,636,262</td>
</tr>
<tr>
<td>$325</td>
<td>15.09%</td>
<td>$4,259,120,007</td>
<td>$2,426,930,315</td>
<td>$1,326,564,712</td>
</tr>
<tr>
<td>$350</td>
<td>16.62%</td>
<td>$5,142,073,153</td>
<td>$3,040,902,266</td>
<td>$1,774,493,161</td>
</tr>
<tr>
<td>$375</td>
<td>18.09%</td>
<td>$6,025,026,300</td>
<td>$3,654,874,217</td>
<td>$2,222,421,610</td>
</tr>
<tr>
<td>$400</td>
<td>19.49%</td>
<td>$6,907,979,446</td>
<td>$4,268,846,167</td>
<td>$2,670,350,060</td>
</tr>
<tr>
<td>$425</td>
<td>20.84%</td>
<td>$7,790,932,592</td>
<td>$4,882,818,118</td>
<td>$3,118,278,509</td>
</tr>
<tr>
<td>$450</td>
<td>22.14%</td>
<td>$8,673,885,738</td>
<td>$5,496,790,069</td>
<td>$3,566,206,959</td>
</tr>
<tr>
<td>$475</td>
<td>23.40%</td>
<td>$9,556,838,884</td>
<td>$6,110,762,020</td>
<td>$4,014,135,408</td>
</tr>
<tr>
<td>$500</td>
<td>24.61%</td>
<td>$10,439,792,030</td>
<td>$6,724,733,971</td>
<td>$4,462,063,858</td>
</tr>
</tbody>
</table>

Source: Potash One, Western Potash, Hatch, Gensource Potash Corp.